EXTRACRANIAL INSONATION: TRICKS AND PITFALLS

Luigi Lusiani, MD
INTERNAL MEDICINE
Castelfranco Veneto (Italy)
“Il fondamento dell’arte medica resta, secondo la mia opinione, l’essere padrone del metodo di indagine..”

Ippocrate
Carotid Artery Duplex Ultrasound
PWD

60° 1.5 mm wide
Internal / Common Carotid
Internal / Common Carotid
Peak Systolic Velocity vs. Stenosis

\[\text{Velocity (cm/sec)} \]

\[\text{Angiography - Diameter Stenosis (\%)} \]
• CONTRALATERAL OCCLUSION
• LOW OR HIGH CARDIAC OUTPUT STATES
• ARRHYTMIAS
• ANEMIA/HEMODILUTION
• TIGHT STENOSIS AT THE CAROTID SIPHON SITE
• AORTIC VALVE STENOSIS OR INSUFFICIENCY

$$\text{PSV}_{\text{ICA}} / \text{PSV}_{\text{CCA}}$$ is convenient
PSV_{ICA}/PSV_{CCA} vs. Stenosis
<table>
<thead>
<tr>
<th>Percentage</th>
<th>PSV<sub>ICA</sub> (cm/s)</th>
<th>EDV<sub>ICA</sub> (cm/s)</th>
<th>PSV<sub>ICA</sub>/PSV<sub>CCA</sub> (cm/s)</th>
<th>SENS %</th>
<th>SPEC %</th>
<th>ACC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>125</td>
<td></td>
<td></td>
<td>83</td>
<td>93</td>
<td>92</td>
</tr>
<tr>
<td>60%</td>
<td>260</td>
<td>70</td>
<td>3.2</td>
<td>84</td>
<td>94</td>
<td>97</td>
</tr>
<tr>
<td>70%</td>
<td>270</td>
<td>110</td>
<td></td>
<td>96</td>
<td>91</td>
<td>93</td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td>140</td>
<td></td>
<td>84</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>NEAR OCCL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCCLUDUS</td>
<td><50</td>
<td>NO</td>
<td>SIGNAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Internal Carotid Stenosis

\[\text{PSV}_{ICA}/\text{PSV}_{CCA} = 3.5 \]

>60%
ANGLE CORRECTION is

- VERY UNCERTAIN

- The measurement of blood velocity is very inaccurate, and stenosis can only be estimated through wide steps of severity
Internal / Common Carotid

Col 68% Map 5
WF Low
PRF 3000 Hz
Flow Opt: Med V

SV Angle –60°
Dep 2.5 cm
Size 1.5 mm
Freq 6.0 MHz
WF Low
Dop 58% C 4
PRF 8333 Hz
FLOW PROFILE is

- HELICAL IN STRAIGHT VESSELS
- SQUEWED IN CURVED VESSELS
- CONVERGENT INTO STENOSIS
- TURBULENT IN MANY PHYSIOLOGIC CONDITIONS
LIMITATIONS OF ANGIOGRAPHY AS “GOLD STANDARD”

- INTER-OBSERVER AND INTRAOBSERVER VARIABILITY
 (agreement 78% and 83%, for a 70% stenosis)
- USED ONLY IN SELECTED PATIENTS
- IT SHOWS DIAMETER REDUCTION
NASCET

North American Symptomatic Carotid Endarterectomy Trial
NASCET Measurement Method = (1 - A/B) * 100
\[Q = V \times A \]

\[V_1 \times A_1 = V_2 \times A_2 \]

\[\frac{V_2}{V_1} = \frac{A_1}{A_2} \]
Most symptomatic patients have stenosis smaller than 50%.

The majority of patients with higher stenotic plaques remain symptom-free.
US CHARACTERIZATION OF CAROTID PLAQUES

• ECHOGENECITY
 - anechoic, isoechoic, hyperechoic

• TEXTURE
 - homogeneous, heterogeneous

• SURFACE CONTOUR
 - smooth, mildly irregular, ulcerated (>2 mm in depth and width)
US CHARACTERIZATION OF CAROTID PLAQUES

- **TYPE 1**: low echogenicity
- **TYPE 2**: intermediate low echog.
- **TYPE 3**: intermediate high echog.
- **TYPE 4**: high echogenicity
- **TYPE 5**: unclassified due to calcium
US CHARACTERIZATION OF CAROTID PLAQUES

PITFALLS

same plaque

• 7.5 MHz = hypo-echogenic (echo-lucent)
• 20 MHz = hyper-echogenic (echo-rich)
US CHARACTERIZATION OF CAROTID PLAQUES

PITFALLS

• SUBJECTIVE
 (GSM concept)

• DIFFICULT TO REPRODUCE
 (lack of pointing facilities)

• CALCIUM
 (21-48% of plaques)
B-mode

CFM

↑↓
DUPLEX SCANNING is

- OPERATOR DEPENDENT
- MACHINE DEPENDENT
- LABORATORY-SPECIFIC CRITERIA (even for multicenter trials)
- CONTINUING QUALITY CONTROL PROCESS